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INTRODUCTION 
 
A force sensor was designed, analysed, built and tested to be 
used in laboratory experiments in order to measure forces 
applied to solid objects that were immersed in a fluid. This 
sensor is a variation of the Whittmore-Petrenko proving ring 
[9][10].  
 
The Whittmore-Petrenko proving ring, now known simply as 
the proving ring, is a metal ring that is equipped with a means 
of measuring its deflection under load. The concept and design 
were created originally by Whittmore and Petrenko at the (US) 
National Bureau of Standards, which is now called the National 
Institute of Standards and Technology [9][10]. The proving 
ring is used to measure force [5].  
 
In its original design, the proving ring consists of two main 
elements, namely:  
 
• The ring itself; 
• The diameter-measuring system.  
 
The ring is made from an elastic material, such as a steel alloy, 
and has a known diameter [9][10]. The measuring device is 
located in the center of the ring. A sketch of the original design 
is shown in Figure 1.  
 
As tensile or compressive forces are applied to the ring through 
the knobs at the top and bottom, known as the external bosses, 
they cause the diameter of the ring to change: when subjected 
to vertical tension, the ring will stretch vertically and shrink 
horizontally; and, when subjected to vertical compression, it 
will swell horizontally and shrink vertically, as illustrated in 
Figure 2. Such changes in the diameter are called deflections of 
the ring [9][10]. These deflections are measured using a 
micrometer screw and a vibrating reed that are mounted within 
the ring and along its vertical diameter (Figure 1).  

 
 

Figure 1: The Whittmore-Petrenko proving ring [1]. 
 

 
 

Figure 2: Changes in the shape of the ring [9]. 
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The proving ring that was designed and built in the laboratory 
at Indiana University-Purdue University Fort Wayne in  
Fort Wayne, USA, replaces the micrometer and reed  
in the Whittmore-Petrenko proving ring with a set of electrical 
resistance strain gauges. A thin ring was used as a  
circular-shaped load cell. It utilises four strain gauges as 
secondary transducers, as sketched by Beckwith and 
Marangoni [1].  
 
Two transducers are mounted on the inner surface of this ring; 
the other two are mounted on its outer surface; and all four are 
connected to the Wheatstone bridge of a strain indicator as 
indicated schematically in Figure 3 [12]. Thus, the ring so 
constructed becomes a load cell that measures strain instead of 
deflection. When in use in the laboratory, the force sensor is 
rigidly supported from above and hangs in a vertical plane as 
shown in Figure 4.  
 

 
 

Figure 3: The ring with mounted gauges [1]. 
 

 
 

Figure 4: The ring used in the laboratory. 
 
ANALYSIS OF THE RING 
 
In order to analyse the ring to show that its mechanical 
behaviour is linearly elastic, the conventional model of the 
loaded ring was used, as shown in Figure 5(a) [7].  
 
After utilising symmetry about the vertical and horizontal axes, 
the upper-right quadrant of the ring was selected for study, as 
shown in Figure 5(b) [7]. It can be seen that the problem is 
statically indeterminate to the first degree.  

 
 

Figure 5: Typical model of the ring used for analysis [7]. 
 
Castigliano’s second theorem was used to derive an 
approximation to the deflection of a thin ring that is subjected 
to an axial force F, as shown in Figure 5 [3][4][6].  
 
Referring to Figure 5(b) [7], an expression for the bending 
moment, M(θ), at a cross section of the curved beam that is at 
an angle θ away from the x-axis, can be obtained from the 
equilibrium of the moments applied to the lower segment of the 
quadrant about that cross section. Doing so leads to: 
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The strain energy U is given by:  
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From Castigliano’s theorem [3][4][6], the vertical deflection of 
this quadrant of the ring is given by: 
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where, by using Eq. (1), one gets: 
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The first term in Eq. (4) is unknown and must be determined 
by other means. Noting that the cross-section at point A does 
not rotate under this loading, one writes:  
 

∂
∂

U
M A

= 0 .                                        (5) 

 
After substituting Eq. (2) into Eq. (5), one obtains: 
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where, from Eq. (1), it can be seen that: 
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Thus, M A  can be obtained from: 
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Substituting Eq. (1) into Eq. (7) and integrating it leads to: 
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Utilising Eq. (8) in Eq. (1), the moment M now becomes: 
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Combining Eq. (8), Eq. (4) and Eq. (3), then integrating them 
gives:  
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This is the deflection of the upper right quadrant, which is the 
same as that of the upper left quadrant. Thus, the deflection of 
the upper half of the ring is given by Eq. (10). Doubling δ gives 
the total deflection of the ring, as follows: 
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Since the ring is symmetrical about a horizontal axis through 
A, the lower half of the ring will deflect by the same amount as 
the upper half. Thus, the total deflection, y, is twice that given 
by Eq. (10) [1][2][6][8]. It can also be written as follows:  
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where D = 2R denotes the diameter of the ring; F, the applied 
force; y, the change in the diameter of the ring in the direction 
of the force; E, Young’s modulus of elasticity of the material of 
which the ring is made, and I, the moment of inertia of the 
cross-section of the ring about its centroidal axis of bending.  
 
The result shown in Eq. (12) agrees with that tabulated by 
Beckwith and Marangoni [1]. This is a simplified version of 
that derived by Cook [8]. It follows from Eq. (12) that the ring 
behaves as a linear spring with a force, F, that is related to its 
deflection, y, by:  
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and 
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The local strain to be registered by the indicator is the change 
in the local arc length around the strain gauge divided by the 
original arc length. It can be written as follows: 
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It follows from these two equations that: 
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Thus, the strain can be estimated using the ratio: 
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where y is given by Eq. (12). 
 
Using Eq. (16) in Eq. (13), then utilising Eq. (14) and Eq. (15), 
one obtains: 
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These last two equations suggest that, when designed and 
manufactured properly, a thin ring will behave as an elastic 
spring of stiffness k given by Eq. (18), that is one that exhibits 
a linear relationship between applied force and the resulting 
deflection, as in Eq. (13), or between the applied force and the 
resulting strain, as in Eq. (17).  
 
The ring that was designed and built at Indiana University-
Purdue University Fort Wayne is pictured in Figure 4.  
It is made of aluminium and had the following key  
dimensions: 
 
• Outside diameter: D0 = 31.5mm; 
• Inside diameter: Di = 27.5mm; 
• Thickness: t = 2.0mm; 
• Width of the ring: w = 19.1mm; 
• Young’s modulus of elasticity: E Pa= 6895107. . 
 
Introducing these dimensions into Eq. (15) and Eq. (18), the 
area moment of inertia, I, and the stiffness of the ring, k, are 
found to be, respectively: 
 
• I m= × −49 0966 10 9 4. ; 
• k N= ×0 09172 106. . 
 
The use of the numerical value of k in Eq. (17) turns this 
equation into: 
 

F = × × −0 09172 10 106 6. ( )ε .                   (19) 
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Since one expects the strain to be read in units of micro 
strains ( )10 6− × strain , one writes 
 

F = 0 09172. ε ,                                (20) 
 
where the units of micro strains have already been accounted 
for. It follows that, when using the ring as a force transducer, 
the measured strain can be converted into the applied force that 
caused it by using Eq. (20). 
 
TESTING THE RING AS A FORCE SENSOR 
 
In order to evaluate Eq. (20), the ring was tested by hanging 
blocks of known masses on it. To this end, a set of cylindrical 
blocks was utilised with standardised masses purchased from 
Ohaus Corporation [11]. The blocks had hooks and allowed for 
variation in the masses that could be suspended onto the ring 
from zero to 2,000g, in 50-gram increments. For each test 
mass, the corresponding strain registered by the strain indicator 
was recorded. The weights of the test masses were plotted 
versus the corresponding strains, as shown in Figure 6. A 
straight line was fitted to the plotted data [14]. The resulting 
equation is: 
 

F = 0 0912. ε .                                 (21) 
 
It is quite remarkable that the experimental result given by Eq. 
(21) is within 0.5% of that from the analysis in Eq. (20).  
 

Calibration of proving ring2
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Figure 6: Elastic behaviour of the designed ring. 
 
CONCLUSIONS 
 
In this article, the author presents a project, the results of which 
have been integrated into instruction and research. A force 
sensor was needed for laboratory experiments. So several 
concepts were designed, analysed, built and tested as a class  
 

exercise. The most successful design was based upon the 
Whittmore-Petrenko proving ring. The elastic behaviour of the 
designed ring was analysed using Castigliano’s second theorem 
and the results so obtained were found to be within 1% of those 
obtained from testing the ring.  
 
The designed and calibrated ring is being used for instruction 
and research to determine the force exerted on a sphere by the 
surrounding fluid. When the fluid is at rest, the measured force 
is at buoyancy. But when there is relative motion between the 
immersed sphere and the surround fluid, the force represents 
viscous drag [13].  
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